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1. Introduction

Sophisticated fusion techniques are an essential component of any
multimodal system. Historically, systems aimed at analyzing the
semantics of multimodal commands and typically investigated a
combination of pointing and drawing gestures and speech. The
most prominent example includes the “Put-that-there” system (Bolt,
1980) that analyzes speech in combination with 3D pointing gestures
referring to objects on a graphical display. Since this groundbreaking
work, numerous researchers have investigated mechanisms for
multimodal input interpretation mainly working on speech, gestures
and gaze while the trend is moving towards intuitive interactions
in everyday environments. Since interaction occurs more and more
in mobile and tangible environments, modern multimodal interfaces
require a greater amount of context-awareness (Johnston et al.,
2011).

At the same time, we can observe a shift from pure task-based
dialogue to more human-like dialogues that aim to create social
experiences. Usually, such dialogue systems rely on a personification
of the user interface by means of embodied conversational agents or
social robots. The driving force behind this work is the insight that a
user interface is more likely to be accepted by the user if the machine
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is sensitive towards the user’s feelings. For example, Martinovsky
and Traum (2003) demonstrated by means of user dialogues with
a training system and a telephone-based information system that
many breakdowns in man-machine communication could be avoided
if the machine was able to recognize the emotional state of the user
and responded to it more sensitively. This observation shows that a
system should not only analyze what the user said or gestured but
also consider more subtle cues, such as psychological user states.

With the departure from pure task-based dialogue to more human-
like dialogues that aim to create social experiences, the concept
of multimodal fusion as originally known in the natural language
community has to be extended. We do not only need fusion mechanisms
that derive information on the user’s intention from multiple modalities,
such as speech, pointing gestures and eye gaze. In addition, fusion
techniques are required that help a system assess how the user perceives
the interaction with it. Accordingly, fusion mechanisms are required not
only at the semantic level, but also at the level of social and emotional
signals. With such systems, any interaction may indeed feature a task-
based component mixed with a social interaction component. These
different components may even be conveyed on different modalities
and overlap in time. It is thus necessary to integrate a deeper semantic
analysis in social signal processing on the one side and to consider
social and emotional cues in semantic fusion mechanisms on the other
side. Both streams of information need to be closely coupled during
fusion since they can both include similar communication channels. For
example, a system may fuse verbal and nonverbal signals to come up
with a semantic interpretation, but the same means of expression may
also be integrated by a fusion mechanism as an indicator of cognitive
load (Chen et al., 2012).

By providing a comparative analysis of semantic fusion of
multimodal utterance and fusion of social signals, this chapter aims
to give a comprehensive overview of fusion techniques as components
of dialogue system that aim to emulate qualities of human-like
communication. In the next section, we first present taxonomies for
categorizing fusion techniques focusing on the relationship between
the single modalities and the level of integration. Section 3 addresses
the fusion of semantic information, whereas Section 4 is devoted to
the fusion of social signals. To enable a better comparison of issues
handled in the two areas, both sections follow a similar structure. We
first introduce techniques for fusing information at different levels
of abstraction and discuss attempts to come up with standards to
represent information to be exchanged in fusion engines. After that we
discuss challenges that arise when moving from controlled laboratory
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environments to less controlled everyday scenarios. Particular attention
is given to the use of fusion mechanisms in human-agent dialogue
where the mechanisms for input analysis have to be tightly coordinated
with appropriate feedback to be given by the agent. Section 5 presents
approaches that combine semantic interpretation with social cue
analysis either to increase the robustness of the analysis components or
to improve the quality of interaction. Section 6 concludes the chapter
and gives an outline for future research.

2. Dimensions of Description

Most systems rely on different components for the low-level analysis
of the single modalities, such as eye trackers, speech and gesture
recognizers, and make use of one or several modality integrators to come
up with a comprehensive interpretation of the multimodal input. In this
context, two fundamental questions arise: How are the single modalities
related to each other and at which level should they be integrated?

2.1 Relationships between modalities

Several combinations of modalities may cooperate in different
manners. Martin et al. (1998) mention the following cases: equivalence,
redundancy, complementarity, specialization and transfer.

When several modalities cooperate by equivalence, this means
that a command or a chunk of information may be produced as an
alternative, by either of them. For example, to consider the needs of a
variety of users, a multimodal interface might allow them to specify a
command via speech or as an alternative by pressing a button.

Modalities that cooperate by redundancy produce the same
information. Redundancy allows a system to ignore one of the two
redundant modalities. For example, when a user uniquely specifies a
referent via speech and uses at the same time an unambiguous pointing
gesture, only one modality needs to be considered to uniquely identify
the referent.

When modalities cooperate by complementarity, different chunks of
information are produced by each modality and have to be integrated
during the interpretation process. A classical example includes a
multimodal command consisting of a spoken utterance and a pointing
gesture both of which contribute to the interpretation.

When modalities cooperate by specialization, this means that
one modality provides the frame of interpretation for another.
Specialization occurs, for example, when a user points to a group of
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objects and specifies the intended referent by verbally providing a
category that distinguishes it from alternatives.

Cooperation by transfer means that a chunk of information
produced by one modality is used by another modality. Transfer is
typically used in hypermedia interfaces when a mouse click triggers
the display of an image.

Different modalities may also be used concurrently, i.e. produce
independent chunks of information, i.e. chunks without any semantic
overlap, at the same time. For example, a user may say “Hello” and
at the same time point to an object. Here the chunks of information
should not be merged. Earlier systems usually did not allow for
a concurrent use of modalities, but required an exclusive use of
modalities. For example, the user may utter a greeting and point to
an object, but not at the same time.

While the relationship between modalities has mainly been
discussed for multimodal user commands, little attempts have been
made to specify the relationship between social signals. However,
modalities that convey social signals may cooperate in a similar
manner as modalities that convey semantic information. For example,
different dimensions of emotions, such as valence and arousal, may be
expressed by different channels of communication, such as the face or
the voice. It is important to note, however, that it is hard to deliberately
employ given channels of communication for the expression of social
signals.

Different modalities do not always convey congruent pieces
of information. In the case of semantic information, little robust
input processing components typically lead to incongruent pieces
of information. In the case of social signals, incongruent pieces of
information often result from the fact that users are not equally
expressive in all modalities. In particular, the attempt to conceal social
signals may result into an inconsistent behavior.

Another classification concerns the timing of modalities. Here,
we may basically distinguish between the sequential use of modalities
and the parallel use of modalities which overlap in time. Semantically
related modalities may overlap in time or may be used in sequence.
If they are merged, the temporal distance should, however, not be too
large. Algorithms for the fusion of social signals usually start from
the assumption that social signals that refer to particular user state,
such as frustration, emerge at exactly the same time interval. We will
later see that such an assumption may be problematic.

Other researchers use similar terms to describe relationships
between modalities. See Lalanne et al. (2009) for an overview.
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2.2 Levels of integration

Basically, two main fusion architectures have been proposed in the
literature depending on at which level sensor data are fused.

In the case of low-level fusion, the input from different sensors is
integrated at an early stage of processing. Low-level fusion is therefore
often also called early fusion. The fusion input may consist of either
raw data or low-level features, such as pitch. The advantage of low-
level fusion is that it enables a tight integration of modalities. There
is, however, no declarative representation of the relationship between
various sensor data which aggravates the interpretation of recognition
results.

In the case of high-level fusion, low-level input has to pass modality-
specific analyzers before it is integrated, e.g. by summing recognition
probabilities to derive a final decision. High-level fusion occurs at a
later stage of processing and is therefore often also called late fusion.
The advantage of high-level fusion is that it allows for the definition of
declarative rules to combine the interpreted results of various sensors.
There is, however, the danger that information goes lost because of a
too early abstraction process.

3. Multimodal Interfaces Featuring Semantic Fusion

In this section, we focus on semantic fusion that combines the meaning
of the single modalities into a uniform representation.

3.1 Techniques for semantic fusion

Systems aiming at a semantic interpretation of multimodal input
typically use a late fusion approach at a decision level and process
each modality individually before fusion (see Figure 1a). Usually,
they rely on mechanisms that have been originally introduced for the
analysis of natural language.

Johnston (1998) proposed an approach to modality integration
for the QuickSet system that was based on unification over typed
feature structures. The basic idea was to build up a common semantic
representation of the multimodal input by unifying feature structures
which represented the semantic contributions of the single modalities.
For instance, the system was able to derive a partial interpretation for
a spoken natural language reference which indicated that the location
of the referent was of type “point”’. In this case, only unification with
gestures of type “point”” would succeed.
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Kaiser et al. (2003) applied unification over typed feature structures
to analyze multimodal input consisting of speech, 3D gestures and
head direction in augmented and virtual reality. Noteworthy is the
fact that the system went beyond gestures referring to objects, but
also considered gestures describing how actions should be performed.
Among others, the system was able to interpret multimodal rotation
commands, such as “Turn the table <rotation gesture> clockwise.”
where the gesture specified both the object to be manipulated and
the direction of rotation.

Another popular approach that was inspired by work on natural
language analysis used finite-state machines consisting of n + 1
tapes which represent the n input modalities to be analyzed and
their combined meaning (Bangalore and Johnston, 2009). When
analyzing a multimodal utterance, lattices that correspond to possible
interpretations of the single input streams are created by writing
symbols on the corresponding tapes. Multiple input streams are then
aligned by transforming their lattices into a lattice that represents
the combined semantic interpretation. Temporal constraints are not
explicitly encoded as in the unification-based approaches described
above, but implicitly given by the order of the symbols written on
the single tapes. Approaches to represent temporal constraints within
state chart mechanisms have been presented by Latoschik (2002) and
more recently by Mehlmann and André (2012).

3.2 Semantic representation of fusion input

A fundamental problem of the very early systems was that there was
no declarative formalism for the formulation of integration constraints.
A noteworthy exception was the approach used in QuickSet which
clearly separated the statements of the multimedia grammar from
the mechanisms of parsing (Johnston, 1998). This approach enabled
not only the declarative formulation of type constraints, such as “the
location of a flood zone should be an area”, but also the specification
of spatial and temporal constraints, such as “two regions should be a
limited distance apart” and “the time of speech must either overlap
with or start within four seconds of the time of the gesture”.

Many recent multimodal input systems, such as SmartKom
(Wahlster 2003), make use of an XML language for representing
messages exchanged between software modules. An attempt to
standardize such a representation language has been made by the World
Wide Web Consortium (W3C) with EMMA (Extensible MultiModal
Annotation markup language). It enables the representation of
characteristic features of the fusion process: “composite” information
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(resulting from the fusion of several modalities), confidence scores,
timestamps as well as incompatible interpretations (“one-of”). Johnston
(2009) presents a variety of multimodal interfaces combining speech-,
touch- and pen-based input that have been developed using the EMMA
standard.

3.3 Choice of segments to be considered
in the fusion process

Most systems start from the assumption that the complete input
provided by the user can be integrated. Furthermore, they presume
that the start and end points of input in each modality are given, for
example, by requiring the user to explicitly mark it in the interaction.
Under such conditions, the determination of processing units to be
considered in the fusion process is rather straightforward. Typically,
temporal constraints are considered to find the best candidates to
be fused with each other. For example, a pointing gesture should
occur approximately at the same time as the corresponding natural
language expression while it is not necessary that the two modalities
temporally overlap. However, there are cases when such an assumption
is problematic and may present a system from deriving a semantic
interpretation. For example, the input components may by mistake
come up with an erroneous recognition result that cannot be integrated.
Secondly, the user may unintentionally provide input, for example,
by making a gesture that should not be taken as a gesture. In natural
environments where users freely interact, the situation becomes even
harder. Users permanently move their arms, but not every gesture is
meant to be part of a system command. If eye gaze is employed as a
means to indicate a referent, the determination of segments becomes
even challenging. Users tend to fixate the objects with the eye they
refer to. However, not every fixation is supposed to contribute to a
referring expression. A first approach to solve this problem has been
presented by Sun et al. (2009). They propose a multimodal input fusion
approach to flexibly skip spare information in multimodal inputs that
cannot be integrated.

3.4 Dealing with imperfect data in the fusion process

Multimodal interfaces often have to deal with uncertain data. Individual
signals may be noisy and/or hard to interpret. Some modalities may
be more problematic than others. A fusion mechanism should consider
these uncertainties when integrating the modalities into a common
semantic representation.
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Usually, multimodal input systems combine several n-best
hypotheses produced by multiple modality-specific generators. This
leads to several possibilities of fusion, each with a score computed
as a weighted sum of the recognition scores provided by individual
modalities. In this vein, it may happen that a badly ranked hypothesis
may still contribute to the overall semantic representation because it
is compatible with other hypotheses. Thus, multimodality enables us
to use the strength of one modality to compensate for weaknesses of
others. For example, errors in speech recognition can be compensated
by gesture recognition and vice versa. Oviatt (1999) reported that
12.5% of pen/voice interactions in QuickSet could be successfully
analyzed due to multimodal disambiguation while Kaiser et al. (2003)
even obtained a success rate of 46.4% for speech and 3D gestures that
could be attributed to multimodal disambiguation.

3.5 Desktop vs. mobile environments

More recent work focuses on the challenge to support a speech-based
multimodal interface on heterogeneous devices including not only
desktop PCs, but also mobile devices, such as smart phones (Johnston,
2009).

In addition, there is a trend towards less traditional platforms,
such as in-car interfaces (Gruenstein et al., 2009) or home controlling
interfaces (Dimitriadis and Schroeter, 2011). Such environments raise
particular challenges to multimodal analysis due to the increased noise
level, the less controlled environment and multi-threaded conversations.
In addition, we need to consider that users are continuously producing
multimodal output and not only when interacting with a system. For
example, a gesture performed by a user to greet another user should
not be mixed up with a gesture to control a system. In order to relieve
the users from the burden to explicitly indicate when they wish to
interact, a system should be able to distinguish automatically between
commands and non-commands.

Particular challenges arise in a situated environment because the
information on the user’s physical context is required to interpret a
multimodal utterance. For example, a robot has to know its location
and orientation as well as the location of objects in its physical
environment, to execute commands, such as “Move to the table”. In
a mobile application, the GPS location of the device may be used to
constrain search results for a natural language user query. When a user
says “restaurants” without specifying an area on the map displayed on
the phone, the system interprets this utterance as a request to provide
only restaurants in the user’s immediate vicinity. Such an approach
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is used, for instance, by Johnston et al. (2011) in the MTalk system, a
multimodal browser for location-based services.

3.6 Semantic fusion in human-agent interaction

A number of multimodal dialogue systems make use of a virtual agent
in order to allow for more natural interaction. Typically, these systems
employ graphical displays to which a user may refer to using touch
or mouse gestures in combination with spoken or written natural
language input; for example, Martin et al. (2006), Wahlster (2003)
or Hofs et al. (2010). Furthermore, the use of freehand arm gestures
(Sowa et al., 2001) and eye gaze (Sun et al., 2008) to refer to objects
in a 3D environment has been explored in interactions with virtual
agents. Techniques for multimodal semantic fusion have also attracted
interest in the area of human-robot interaction. In most systems, the
user’s hands are tracked to determine objects or locations the user is
referring to via natural language; for example, Burger et al. (2011).
In addition to the recognition of hand gestures, Stiefelhagen et al.
(2004) make use of head tracking based on the consideration that users
typically look at the objects they refer to.

While some of the agent-based dialogue systems employ unification-
based grammars (Wahlster, 2003) or chart starts (Sowa et al., 2001)
as presented in Section 3.1, others use a hybrid fusion mechanism
combining declarative formalisms, such as frames, with procedural
elements (Martin et al., 2006). Often the fusion of semantic information
is triggered by natural language components which detect a need to
integrate information from another modality (Stiefelhagen et al., 2004).

In addition, attempts have been made to consider how multimodal
information is analyzed and produced by humans in the semantic fusion
process. Usually what is being said becomes not immediately clear, but
requires multiple turns between two interlocutors. Furthermore, people
typically analyze speech in an incremental manner while it is spoken
and provide feedback to the speaker before the utterance is completed.
For example, a listener may signal by a frown that an utterance
is not fully understood. To simulate such a behavior in human-
agent interaction, a tight coupling of multimodal analysis, dialogue
processing and multimodal generation is required. Stiefelhagen et al.
(2007) propose to allow for clarification dialogues in order to improve
the accuracy of the fusion process in human-robot dialogue. Visser et
al. (2012) describe an incremental model of grounding that enables the
simulation of several grounding acts, such as initiate, acknowledge,
request and repair, in human-agent dialogue. If the virtual agent is
not able to come up with a meaning for the user’s input, it generates
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an appropriate feedback signal, such as a frown, to encourage more
information from the user. As a consequence, the fusion process in this
system may extend over a sequence of turns in a multimodal dialogue.

4. Multimodal Interfaces Featuring Fusion
of Social Signals

Recently, the automatic recognition of social and emotional cues
has shifted from a side issue to a major topic in human-computer
interaction. The aim is to enable a very natural form of interaction by
considering not only explicit instructions by human users, but also more
subtle cues, such as psychological user states. A number of approaches
to automated affect recognition have been developed exploiting a
variety of modalities including speech (Vogt and André, 2005), facial
expressions (Sandbach et al., 2012), body postures and gestures
(Kleinsmith et al., 2011) as well as physiological measurements (Kim
and André, 2008). Also, multimodal approaches to improve emotion
recognition accuracy are reported, mostly by exploiting audiovisual
combinations. Results suggest that integrated information from audio
and video leads to improved classification reliability compared to a
single modality—even with fairly simple fusion methods.

In this section, we will discuss applications with virtual humans
and social robots that make use of mechanisms for fusing social and
emotional signals. We will start off by discussing a number of design
decisions that have to be made for the development of such systems.

4.1 Techniques for fusing social signals

Automatic sensing of emotional signals in real-time systems usually
follows a machine learning approach and relies on an extensive set of
labeled multimodal data. Typically, such data are recorded in separate
sessions during which users are asked to show certain actions or
interact with a system that has been manipulated to induce the desired
behavior. Afterward, the collected data is manually labeled by human
annotators with the assumed user emotions. Thus, a huge amount of
labeled data is collected for which classifiers are trained and tested.
An obvious approach to improve the robustness of the classifiers is
the integration of data from multiple channels. Hence, an important
decision to take concerns the level at which the single modalities
should be fused.

A straightforward approach is to simply merge the features
calculated from each modality into one cumulative structure, extract
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the most relevant features and train a classifier with the resulting
feature set. Hence, fusion is based on the integration of low-level
features at the feature level (see Figure 1b) and takes place at a rather
early stage of the recognition process.

An alternative would be to fuse the recognition results at the
decision level based on the outputs of separate unimodal classifiers
(see Figure 1c). Here, multiple unimodal classifiers are trained for
each modality individually and the resulting decisions are fused by
using specific weighting rules. In the case of emotion recognition, the
input for the fusion algorithm may consist of either discrete emotion
categories, such as anger or joy, or continuous values of a dimensional
emotion model (e.g. continuous representation of the valence or the
arousal of the emotions). Hence, fusion is based on the integration of
high-level concepts and takes place at a later stage of the recognition
process.

Eyben et al. (2011) propose a mechanism that fuses audiovisual
social behaviors at an intermediate level based on the consideration
that behavioral events, such as smiles, head shakes and laughter,
convey important information on a person’s emotional state that might
go lost if information is fused at the level of low-level features or at
the level of emotional states.

Which level of modality integration yields the best results is
usually hard to predict. Busso et al. (2004) report on an emotion-
specific comparison of feature-level and decision-level fusion that
was conducted for an audiovisual database containing four emotions,
sadness, anger, happiness, and neutral state, deliberately posed by an
actress. They observed for their corpus that feature-level fusion was
most suitable for differentiating anger and neutral while decision-level
fusion performed better for happiness and sadness. Caridakis et al.
(2007) presented a multimodal approach for the recognition of eight
emotions that integrated information from facial expressions, body
gestures, and speech. They observed a recognition improvement of
more than 10% compared to the most successful unimodal system
and the superiority of feature-level fusion to decision-level fusion.
Wagner et al. (2011a) tested a comprehensive repertoire of state-of-
the-art fusion techniques including their own emotion-specific fusion
scheme on the acted DaFEx corpus and the more natural CALLAS
corpus. Results were either considerably improved (DaFEx) or at least
in line with the dominating modality (CALLAS). Unlike Caridakis and
colleagues, Wagner and colleagues found that decision-level fusion
yielded more promising results than feature-level fusion.
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W3C EmotionML (Emotion Markup Language) has been proposed
as a technology to represent and process emotion-related data and
to enable the interoperability of components dedicated to emotion-
oriented computing. An attempt towards a language that is not limited
to the representation of emotion-related data, but directed to the
representation of nonverbal behavior in general has been recently made
by Scherer et al. (2012) with PML (Perception Markup Language). As
in the case of semantic fusion, the authors identified a specific need
to represent uncertainties in the interpretation of data. For example,
a gaze away from the interlocutor may signal a moment of high
concentration, but also be an indicator of disengagement.

4.2 Acted versus spontaneous signals

Most emotion recognition systems still rely exclusively on acted
data for which very promising results have been obtained. The way
emotions are expressed by actors may be called prototypical, and
independent observers would largely agree on the emotional state of
these speakers. A common example includes voice data from actors for
which developers of emotion recognition systems reported accuracy
rates of over 80% for seven emotion classes. In realistic applications,
there is, however, no guarantee that emotions are expressed in a
prototypical manner. As a consequence, these applications still
represent a great challenge for current emotion recognition systems,
and it is obvious to investigate whether the recognition rates obtained
for unimodal non-acted data can be improved by considering multiple
modalities.

Unfortunately, the gain obtained by multimodal fusions seems to
be lower for non-acted than for acted data. Based on a comprehensive
analysis of state-of-the-art approaches to affect recognition, D’'Mello
and Kory (2012) report on an average improvement of 8.12% for
multimodal affect recognition compared to unimodal affect recognition
while the improvement was significantly higher for acted data (12.1%)
than for spontaneous data (4.39%).

One explanation might be that experienced actors are usually
able to express emotions consistently across various channels while
natural speakers do not have this capacity. For example, Wagner et
al. (2011a) found that natural speakers they recorded for the CALLAS
corpus were more expressive in their speech than in their face or
gestures—probably due to the fact that the method they used to elicit
emotions in people mainly affected vocal emotions. As a consequence,
they did not obtain a high gain for multimodal fusion compared to
the unimodal speech-based emotion classifier. At least, they were able
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to handle disagreeing modalities in a way so that competitive results
to the best channel could be achieved.

4.3 Offline versus online fusion

Characteristic of current research on the multimodal analysis of
social and emotional signals is the strong concentration on posteriori
analyses. Out of the many methods discussed in the recent analysis
by D’Mello and Kory (2012), hardly any one of them was tested in
an online scenario where a system responds to users’ social and
emotional signals while they are interacting with it. The move from
offline to online analysis of social and affective cues raises a number
of challenges for the multimodal recognition task. While in offline
analysis the whole signal is available and analysis can fall back on
global statistics, such a treatment is no longer possible for online
analysis. In addition, offline analysis usually focuses on a small set of
pre-defined emotion classes and neglects, for example, data that could
not be uniquely assigned to a particular emotion class. Online analysis
has, however, to take into account all emotion data. Finally, while there
are usually no temporal restrictions for offline analysis, online analysis
has to be very fast to enable a fluent human-robot dialogue. A fusion
mechanism specifically adapted to the needs of online fusion has
been used in the Callas Emotional Tree, an artistic Augmented Reality
installation of a tree which responds to the spectators’ spontaneous
emotions reactions to it; see Gilroy et al. (2008). The basic idea of this
approach is to derive emotional information from different modality-
specific sensors and map it onto the 3D of the Pleasure-Arousal-
Dominance model (PAD model) by Mehrabian (1980). In addition,
to the input provided by a modality-specific sensor at a particular
instance of time, the approach considers the temporal dynamics of
modality-specific emotions by integrating the current value provided
by a sensor with the previous value. The fusion vector then results
from a combination of the vectors representing the single modality-
specific contributions. Unlike traditional approaches to sensor fusion,
PAD-based fusion integrates contributions from the single modalities
in a frame-wise fashion and is thus able to respond immediately to a
user’s emotional state.

4.4 Choice of segments to be considered
in the fusion process

Even though it is obvious that each modality has a different timing,
most fusion mechanisms either use processing units of a fixed duration
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or linguistically motivated time intervals, such as sentences. Kim et
al. (2005) suggested for a corpus consisting of speech and biosignals
choosing the borders of the single segments in such a way that it lies
in the middle between two spoken utterances. Lingenfelser et al. (2011)
used the time interval covered by a spoken utterance for all considered
modalities, i.e. audio and video. These strategies suffer from two
major problems. First, significant hints for emotion recognition from
different modalities are not guaranteed to emerge at exactly the same
time interval. Second, they might occur in a shorter time period than
a sentence only. Classification accuracy could be expected to improve,
if modalities were segmented individually and the succession and
corresponding delays between occurrences of emotional hints in
different signals could be investigated more closely. A promising step
into this direction is the event-based fusion mechanism developed for
the Callas Emotional Tree (Gilroy et al., 2011). Rather than computing
global statistics in a segmentation-based manner, the approach aims
to identify changes in the modality-specific expression of an emotion
and is thus able to continuously respond to emotions of users while
they are interacting with the system.

4.5 Dealing with imperfect data in the fusion process

Most algorithms for social signal fusion start from the assumption that
all data from the different modalities are available at all time. As long
as a system is used offline, only this condition can be easily met by
analyzing the data beforehand and omitting parts where input from
one modality is corrupted or completely missing. However, in online
mode, a manual pre-selection of data is not possible and we have
to find adequate ways of handling missing information. Generally,
various reasons for missing information can be identified. First of
all, it is unrealistic to assume that a person continuously provides
meaningful data for each modality. Second, there may be technical
issues, such as noisy data due to unfortunate environmental conditions
or missing data due to the failure of a sensor. As a consequence, a
system needs to be able to dynamically decide which channels to
exploit in the fusion process and to what extent the present signals
can be trusted. For the case that data is partially missing a couple of
treatments have been suggested in literature, such as the removal of
noise or the interpolation of missing data from available data. Wagner
et al. (2011a) present a comprehensive study that successfully applies
adaptations of state-of-the-art fusion techniques to the missing data
problem in multimodal emotion recognition.
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While semantic fusion is driven by the need to exploit the
complementarity of modalities, fusion techniques in social signal
processing make less explicit use of modality-specific benefits.
Nevertheless, such an approach might help improve the gain obtained
by current fusion techniques. For example, there is evidence that
arousal is recognized more reliably using acoustic information while
facial expressions yield higher accuracy for valence. In addition,
context information may be exploited to adapt the weights to be
assigned to the single modalities. For example, in a noisy environment
less weight might be given to the audio signal. A first attempt to make
use of the complementarity of modalities has been by Wagner et al.
(2011a). Based on evaluation of training data, experts for every class
of the classification problem are chosen. Then the classes are rank
ordered, beginning with the worst classified class across all classifiers
and ending with the best one.
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Semantic Combined
Integration Interpretation
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Figure 1. Different fusion mechanisms: (a) Semantic fusion, (b) feature-level fusion and (c)
decision-level fusion.
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4.6 Evaluation of schemes for social signal fusion

Since it is usually obvious which intention a user aims to convey
to a system, the evaluation of schemes for semantic fusion is rather
straightforward. On the opposite, the evaluation of fusion schemes
for social and emotional signals raises a number of challenges. First
of all, it is not obvious how to acquire ground truth data against
which to evaluate the performance of automated emotion-recognition
components. Users show a great deal of individuality in their emotional
responses, and there is no clear mapping between behavioral cues and
emotional states. To avoid a too-high degree of subjective interpretation,
ground truth data are typically obtained by requesting multiple
annotators label corpora. A voting scheme can be used if annotators
disagree. One question to consider in this context is the amount
of information to be made available to the annotators. Should the
annotator just have access to one modality, such as speech or video,
or to all available modalities? To provide a fair comparison between
human and machine performance, it seems reasonable to make all the
modalities that will be considered in the fusion process available to the
human annotator. However, to acquire realistic ground truth values,
one might consider giving the human annotator as much information
as possible even if the fusion process will only employ part of it.

Another question concerns the processing units which should be
taken into account for an evaluation. Since online fusion processes
data frame by frame, an evaluation should consider time serious over
a whole experimental session as opposed to computing global statistics
over a longer period of time. One option might be to make use of
an annotation tool, such as Feeltrace, that allows for the continuous
annotation of data.

Instead of experimentally testing the robustness of the fusion
process, a number of approaches have rather tested the effect of it.
Gratch et al. (2007) presented an artificial listener that was able to
recognize a large variety of verbal and nonverbal behaviours from
a human user including acoustic features, such as hesitations or
loudness, as well as body movements, such as head nods and posture
shifts, and responded to it by providing nonverbal listening feedback.
The system does not seem to employ a fusion engine, but rather
responds to cues conveyed in a particular modality, such as a head
nod, directly. An evaluation of the system revealed that the responsive
agent was more successful in creating rapport with the human user
than the non-responsive agent.

Typically, most experimental studies investigating the potential
of social signal processing in human-agent dialogues have been
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performed offline, i.e. after the interaction between the human and
the agent. Such an approach may, however, be problematic because
the participants of an experiment might have forgotten what they
experienced at a particular instance of time. As an alternative, Gilroy
et al. (2011) present an evaluation approach which compares the results
of the fusion process with the users” physiological response during
the interaction with the system.

4.7 Social signal fusion in human-agent interaction

Starting the recent years, various attempts have been made to explore
the potential of social signal processing in human interaction with
embodied conversational agents and social robots.

Sanghvi et al. (2011) analyzed body postures and gestures as an
indicator of the emotional engagement of children playing chess with
the iCat robot. They came to the conclusion that the accuracy of the
detection methods was high enough to integrate the approach into
an affect recognition system for a game companion. Even though
the approach above addressed an attractive scenario for multimodal
social signal fusion, it was only tested in offline mode. An integration
of the approach into an interactive human-robot system scenario did
not take place.

Increasing effort has been made on the multimodal analysis of
verbal and nonverbal backchannel behaviors during the interaction
with a virtual agent. An example includes the previously mentioned
artificial listener by Gratch et al. (2007) that aims to create rapport with
a human interlocutor through simple contingent nonverbal behaviors.
A more recent example is the virtual health care provider recently
presented by Scherer et al. (2012). This agent is able to detect and
respond multimodal behaviors related to stress and post-traumatic
stress disorder. For example, when the patient pauses a lot in the
conversation, the agent tries to encourage her to continue speaking.
Even though both systems are able to analyze multiple modalities, they
do not seem to employ a fusion engine, but rather directly respond to
cues conveyed in a particular modality, such as a head nod.

An exemplary application that is based on a fusion algorithm
adapted to the specific needs of online processing is the Affective
Listener “Alfred” developed by Wagner et al. (2011b). Alfred is a butler-
like virtual character that is aware of the user and reacts to his or her
affective expressions. The user interacts with Alfred via acoustics of
speech and facial expressions (see Figure 2). As a response, Alfred simply
mirrors the user’s emotional state by appropriate facial expressions.
This behavior can be interpreted as a simple form of showing empathy.
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Figure 2. Affective Listener Alfred: the current user state is perceived using SSI, a framework
for social signal interpretation (Wagner et al., 2011b) framework (upper left window);
observed cues are mapped onto the valence and arousal dimensions of a 2D emotion model
(upper middle window); values for arousal and valence are combined to a final decision
and transformed to a set of Facial Animation Coding System (FACS) parameters, which are
visualized by the virtual character Alfred (right window).

(Color image of this figure appears in the color plate section at the end of the book.)

The fusion approach is inspired by that developed for the
Augmented Reality Tree. However, while Gilroy et al. (2011) generate
one vector per modality, Wagner et al. (2011b) generate one vector for
each detected event. This way they prevent sudden leaps in case of
a false detection. Since the strength of a vector decreases with time,
the influence of older events is lessened until the value falls under a
certain threshold and is completely removed.

5. Exploiting Social Signals for Semantic Interpretation

Few systems combine semantic multimodal fusion for task-based
command interpretation and multimodal fusion of social signals. A
few studies nevertheless mention some interaction between the two
communication streams. Such combinations occur in users’ behaviors.
For example, a user may say “Thanks” to a virtual agent and at the
same time start a new command using gesture (Martin et al., 2006). In
another study about multimodal behaviors of users when interacting
with a virtual character embedded in a 3D graphical environment,
such concurrent behaviors were also observed. In such cases, speech
input was preferred for social communication with the virtual character
(“how old are you?”), whereas 2D gesture input was used in parallel
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for task command (e.g. to get some information about one of the
graphical object displayed in the environment) (Martin et al., 2006).

An example of a system managing these two streams includes
the SmartKom system, which features adaptive confidence measures.
While the user is speaking (possibly for task commands), the confidence
value of the mouth area recognizer is decreased for the module that
detected emotions expressed in user’s facial expression (Wahlster,
2003). The SmartKom system thus uses a mixture of early fusion for
analyzing emotions from facial expressions and speech and late fusion
for analyzing the semantics of utterances.

Rich et al. (2010) presented a model of engagement for human-
robot interaction that took into account direct gaze, mutual gaze,
relevant next contribution and back channel behaviors as an indicator
of engagement in a dialogue. Interestingly, the approach was used
for modeling the behavior of both the robot and the human. As a
consequence, it was able to explain failures in communication from
the perspective of both interlocutors. Their model demonstrates the
close interaction between the communication streams required for
semantic processing and social signal processing because it integrates
multimodal grounding with techniques for measuring experiential
qualities of a dialogue. If communication partners fail to establish a
common understanding of what a dialogue is about, it is very likely
that they will lose interest in continuing the interaction.

Bosma and André (2004) presented an approach to the joint
interpretation of emotional input and natural language utterances.
Especially short utterances tend to be highly ambiguous when solely
the linguistic data is considered. An utterance like “right” may be
interpreted as a confirmation as well as a rejection, if intended cynically,
and so may the absence of an utterance. To integrate the meanings of
the users’ spoken input and their emotional state, Bosma and André
combined a Bayesian network to recognize the user’s emotional state
from physiological data, such as heart rate, with weighted finite-state
machines to recognize dialogue acts from the user’s speech. The finite-
state machine approach was similar to that presented by Bangalore and
Johnson (2009). However, while Bangalore and Johnston used finite-
state machines to analyze the propositional content of dialogue acts,
Bosma and André focused on the speaker’s intentions. Their objective
was to discriminate a proposal from a directive, an acceptance from
a rejection, etc., as opposed to Bangalore and Johnston who aimed at
parsing user commands that are distributed over multiple modalities,
each of the modalities conveying partial information. That is, Bosma
and André did not expect the physiological modality to contribute to
the propositional interpretation of an utterance. Instead, the emotional
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input was used to estimate the probabilities of dialogue acts, which
were represented by weights in the finite-state machines.

Another approach that fuses emotional states with natural language
dialogue acts has been presented by Crook et al. (2012) who integrated
a system to recognize emotions from speech developed by Vogt et al.
(2008) into a natural language dialogue system order to improve the
robustness of a speech recognizer. Their system fuses emotional states
recognized from the acoustics of speech with sentiments extracted
from the transcript of speech. For example, when the users employ
words to express their emotional state that are not included in the
dictionary, the system would still be able to recognize their emotions
from the acoustics of speech.

6. Conclusion and Future Work

In this chapter, we discussed approaches to fuse semantic information
in dialogue systems as well as approaches to fuse social and emotional
cues. While the fusion of semantic information has been strongly
influenced by research done in the natural language community,
the fusion of social signals has heavily relied on techniques from
the multimedia community. Recently, the use of virtual agents and
robots in dialogue systems has led to stronger interactions between
the two areas of research. The use of social signal processing in
dialogue systems may not only improve the quality of interaction,
but also increase their robustness. Vice versa research in social
signal processing may profit from techniques developed for semantic
fusion. Most systems that integrate mechanisms for the multimodal
fusion of social signals in human-agent dialogue only consider a
supplementary use of multiple signals. That is, the system responds to
each cue individually, but does not attempt to resolve ambiguities by
considering additional modalities. One difficulty lies in the fact that
data have to be integrated in an incremental fashion while mechanisms
for social signal fusion usually start from global statistics over longer
segments. A promising avenue for future research might be to research
to what extent techniques from semantic fusion might be included to
exploit the complementary use of social signals. Among other things,
this implies a departure from the fusion of low-level features in favor
of higher level social cues, such as head nods or laughters.
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